FINAL REVIEW, MATH 215, SPRING 2019

Induction. Definition: Let P be some property about natural numbers. Suppose that the following hold:

(1) (base) P(1) is true.

(2) (inductive) For all $n \ge 1$, $P(n) \rightarrow P(n+1)$.

Then for all $n \ge 1$, P(n) holds.

Know how to do proofs by induction.

Functions. Definition of a function, one-to-one, onto, bijection, and how to prove that a function is one-to-one, onto, or a bijection.

Equivalence relations. Definition of an equivalence relation, an equivalence class, being able to prove that the equivalences classes form a partition, being able to prove that a relation is an equivalence relation.

Modular arithmetic

- (1) Definition: $a \equiv b \mod n$ iff n | (b-a); the proof that this is an equivalence relation; the set of equivalence classes is $\mathbb{Z}_n := \{[0], [1], ..., [n-1]\}$.
- (2) How to add and multiply mod n, e.g. be able to do the tables for addition and multiplication in $\mathbb{Z}_3, \mathbb{Z}_4$, etc.
- (3) The proof that if $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then $a+b \equiv a'+b' \mod n$ and $ab \equiv a'b' \mod n$
- (4) The proof that if a and n are relatively prime (i.e. gcd(a, n) = 1), then multiplication by a is a bijection from $\mathbb{Z}_n \to \mathbb{Z}_n$.

(5) The statement of the Chinese remainder theorem:

Suppose that $\{n_1, ..., n_k\}$ are pairwise relatively prime natural numbers. Then for any choice of $a_1, ..., a_k$, the system:

- $x = a_1 \mod n_1$
- $x = a_2 \mod n_2$
- ...
- $x = a_k \mod n_k$
- has a solution for x which is unique mod the product $n_1 \cdot n_2 \dots n_k$.

(6) Solving systems of modular equations.

Sets and Cardinality

(1) Notation:

 $\mathbb{N} := \{0, 1, 2, ...\}$ is the natural numbers,

 $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$ is the integers,

 $\mathbb{Q} := \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \}$ is the rational numbers,

 \mathbb{R} denotes the reals, \mathbb{C} denotes the complex numbers.

 $|\mathbb{N}| = \aleph_0 = \omega$, $|\mathbb{R}| = c = 2^{\aleph_0}$. Here c stand for the continuum. ^A2 is the set of all functions from A to $\{0, 1\}$; i.e. ^A2 := $\{f : A \to 0\}$

- $\{0,1\} \mid f \text{ is a function}\}.$
- (2) The Pigeonhole principle.
- (3) Comparing cardinalities of sets:
 - (a) |A| = |B| iff there is a bijection $f : A \to B$.
 - (b) $|A| \leq |B|$ iff there is a one-to-one function $f: A \to B$ iff there is an onto function $g: B \to A$.
 - (c) A is countable iff there is an onto function $f : \mathbb{N} \to A$. Note that this includes all finite sets. If an infinite set A is countable, then $|A| = \omega$.
 - (d) Examples: $|\mathbb{Z}| = |\mathbb{Q}| = \omega$; the set of all polynomials with rational coefficients is countable; the reals are uncountable.
- (4) The power set:
 - (a) Definition: $\mathcal{P}(A) = \{B \mid B \subset A\};$
 - (b) if |A| = n, then $|\mathcal{P}(A)| = 2^n$, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$ (no proof)
 - (c) the proof that $|\mathcal{P}(A)| = |^{A}2|$ for any set A.
 - (d) the proof of Cantor's theorem that there is no onto function $f: A \to \mathcal{P}(A)$ and so $|A| < |\mathcal{P}(A)|$,
 - (e) the proof that there is no largest cardinal.

Sample problems:

Problem 1. Determine which of the following is an equivalence relation. Prove your answer.

- (1) \leq on the rational numbers \mathbb{Q} .
- (2) The Vitali relation on \mathbb{R} defined by $aE_v b$ iff $b a \in \mathbb{Q}$
- (3) The relation E on \mathbb{Z} given by aEb iff a + b is even.

Problem 2. Let E be an equivalence relation on some set X. Prove that the equivalence classes form a partition on X.

Problem 3. Solve the following system of equations for x:

- $x = 5 \mod 10$
- $x = 0 \mod 9$
- $x = 3 \mod 7$.

Problem 4. (a) Let A and B be sets. Show that if |A| = |B|, then $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.

(b) Show that $|\mathcal{P}(\mathbb{Q})| = c$ (where $c = |\mathbb{R}|$).

Problem 5. Show that there is a bijection between $\mathcal{P}(A)$ and $^{A}2$, and so they have the same cardinality.

Problem 6. Prove Cantor's theorem: that for every set A, $|A| < |\mathcal{P}(A)|$.

Problem 7. Show that the set $B = \{10k \mid k \in \mathbb{Z}\} = \{..., -20, -10, 0, 10, 20, ...\}$ is countable.

Problem 8. (a) State the principle of induction. (b) Prove that for all $n, 1+2+...+n = \frac{n(n+1)}{2}$.

Problem 9. Show that $\sqrt[3]{2}$ is not a rational number.

Problem 10. Show that there is no greatest prime number.