FINAL REVIEW, MATH 215, SPRING 2019

Induction. Definition: Let P be some property about natural numbers. Suppose that the following hold:
(1) (base) $P(1)$ is true.
(2) (inductive) For all $n \geq 1, P(n) \rightarrow P(n+1)$.

Then for all $n \geq 1, P(n)$ holds.
Know how to do proofs by induction.
Functions. Definition of a function, one-to-one, onto, bijection, and how to prove that a function is one-to-one, onto, or a bijection.

Equivalence relations. Definition of an equivalence relation, an equivalence class, being able to prove that the equivalences classes form a partition, being able to prove that a relation is an equivalence relation.

Modular arithmetic

(1) Definition: $a \equiv b \bmod n$ iff $n \mid(b-a)$; the proof that this is an equivalence relation; the set of equivalence classes is $\mathbb{Z}_{n}:=\{[0],[1], \ldots,[n-$ 1] $\}$.
(2) How to add and multiply $\bmod n$, e.g. be able to do the tables for addition and multiplication in $\mathbb{Z}_{3}, \mathbb{Z}_{4}$, etc.
(3) The proof that if $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, then $a+b \equiv a^{\prime}+b^{\prime}$ $\bmod n$ and $a b \equiv a^{\prime} b^{\prime} \bmod n$
(4) The proof that if a and n are relatively prime (i.e. $\operatorname{gcd}(a, n)=1$), then multiplication by a is a bijection from $\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$.
(5) The statement of the Chinese remainder theorem:

Suppose that $\left\{n_{1}, \ldots, n_{k}\right\}$ are pairwise relatively prime natural numbers. Then for any choice of a_{1}, \ldots, a_{k}, the system:

- $x=a_{1} \bmod n_{1}$
- $x=a_{2} \bmod n_{2}$
- ...
- $x=a_{k} \bmod n_{k}$
has a solution for x which is unique mod the product $n_{1} \cdot n_{2} \ldots n_{k}$.
(6) Solving systems of modular equations.

Sets and Cardinality

(1) Notation:
$\mathbb{N}:=\{0,1,2, \ldots\}$ is the natural numbers,
$\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the integers,
$\mathbb{Q}:=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\}$ is the rational numbers, \mathbb{R} denotes the reals, \mathbb{C} denotes the complex numbers.
$|\mathbb{N}|=\aleph_{0}=\omega,|\mathbb{R}|=c=2^{\aleph_{0}}$. Here c stand for the continuum.
${ }^{A} 2$ is the set of all functions from A to $\{0,1\}$; i.e. ${ }^{A} 2:=\{f: A \rightarrow$ $\{0,1\} \mid f$ is a function $\}.$
(2) The Pigeonhole principle.
(3) Comparing cardinalities of sets:
(a) $|A|=|B|$ iff there is a bijection $f: A \rightarrow B$.
(b) $|A| \leq|B|$ iff there is a one-to-one function $f: A \rightarrow B$ iff there is an onto function $g: B \rightarrow A$.
(c) A is countable iff there is an onto function $f: \mathbb{N} \rightarrow A$. Note that this includes all finite sets. If an infinite set A is countable, then $|A|=\omega$.
(d) Examples: $|\mathbb{Z}|=|\mathbb{Q}|=\omega$; the set of all polynomials with rational coefficients is countable; the reals are uncountable.
(4) The power set:
(a) Definition: $\mathcal{P}(A)=\{B \mid B \subset A\}$;
(b) if $|A|=n$, then $|\mathcal{P}(A)|=2^{n},|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$ (no proof)
(c) the proof that $|\mathcal{P}(A)|=\left|{ }^{A} 2\right|$ for any set A.
(d) the proof of Cantor's theorem that there is no onto function $f: A \rightarrow \mathcal{P}(A)$ and so $|A|<|\mathcal{P}(A)|$,
(e) the proof that there is no largest cardinal.

Sample problems:
Problem 1. Determine which of the following is an equivalence relation. Prove your answer.
$(1) \leq$ on the rational numbers \mathbb{Q}.
(2) The Vitali relation on \mathbb{R} defined by $a E_{v} b$ iff $b-a \in \mathbb{Q}$
(3) The relation E on \mathbb{Z} given by $a E b$ iff $a+b$ is even.

Problem 2. Let E be an equivalence relation on some set X. Prove that the equivalence classes form a partition on X.

Problem 3. Solve the following system of equations for x :

- $x=5 \bmod 10$
- $x=0 \bmod 9$
- $x=3 \bmod 7$.

Problem 4. (a) Let A and B be sets. Show that if $|A|=|B|$, then $|\mathcal{P}(A)|=$ $|\mathcal{P}(B)|$.
(b) Show that $|\mathcal{P}(\mathbb{Q})|=c($ where $c=|\mathbb{R}|)$.

Problem 5. Show that there is a bijection between $\mathcal{P}(A)$ and ${ }^{A} 2$, and so they have the same cardinality.

Problem 6. Prove Cantor's theorem: that for every set $A,|A|<|\mathcal{P}(A)|$.
Problem 7. Show that the set $B=\{10 k \mid k \in \mathbb{Z}\}=\{\ldots,-20,-10,0,10,20, \ldots\}$ is countable.

Problem 8. (a) State the principle of induction.
(b) Prove that for all $n, 1+2+\ldots+n=\frac{n(n+1)}{2}$.

Problem 9. Show that $\sqrt[3]{2}$ is not a rational number.
Problem 10. Show that there is no greatest prime number.

